Shear Correlations update

SEP 22 2015 (also July 14) HyeYun Park

Goals

- compare shear from x-rays and in Phosim
 - only sensor diffusion, no TRs etc; no atmo

 learn about spurious shear in LSST and reproduce Chihway's results with updated Phosim

compare with x-ray

PHOSIM?

wavelength, RA, DEC, x&y location, number, type,.. etc

atmosphere

clouds, wind, temperature, water pressure,... etc

telescope

instrument

dome seeing

tracking, shutter error,... etc

ccd temperature, silicon thickness,...etc

can change object size by changing:

- size before atmosphere
- dome seeing after atmosphere

changing sigma of object LSST 1pix=0.2"

sigma=0.4", atmosphere on

10px

sigma=0.4", atmosphere off

sigma=0.8", atmosphere on

sigma=0.8", atmosphere off

changing dome seeing FWHM sigma of object=0.4"

Changing objects' sizes -atmosphere on

shear correlation

compare with Chihway arXiv: 1206.1378v4

Larger object harder to squeeze

Changing dome seeing FWHM atm off

Ellipticity

g1 error and g1

Plan

- Non-stochastic effects
- Stochastic effects
 - counting statistics(largest noise)
 - stochastic optics effects
 - tracking errors
 - atmospheric effects